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2 University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, United States

Increasing industrial and agricultural activities have led to a disturbing increase of pollutant
discharges into the environment. Most of these pollutants can induce short-term,
sustained or delayed impacts on developmental, physiological, and behavioral
processes that are often regulated by the endocrine system in vertebrates, including
fish, thus they are termed endocrine-disrupting chemicals (EDCs). Physiological impacts
resulting from the exposure of these vertebrates to EDCs include abnormalities in growth
and reproductive development, as many of the prevalent chemicals are capable of binding
the receptors to sex steroid hormones. The approaches employed to investigate the
action and impact of EDCs is largely dependent on the specific life history and habitat of
each species, and the type of chemical that organisms are exposed to. Aquatic
vertebrates, such as fish, are among the first organisms to be affected by waterborne
EDCs, an attribute that has justified their wide-spread use as sentinel species. Many fish
species are exposed to these chemicals in the wild, for either short or prolonged periods
as larvae, adults, or both, thus, studies are typically designed to focus on either acute or
chronic exposure at distinct developmental stages. The aim of this review is to provide an
overview of the approaches and experimental methods commonly used to characterize
the effects of some of the environmentally prevalent and emerging EDCs, including 17 a-
ethinylestradiol, nonylphenol, BPA, phthalates, and arsenic; and the pervasive and
potential carriers of EDCs, microplastics, on reproduction and growth. In vivo and in
vitro studies are designed and employed to elucidate the direct effects of EDCs at the
organismal and cellular levels, respectively. In silico approaches, on the other hand,
comprise computational methods that have been more recently applied with the potential
to replace extensive in vitro screening of EDCs. These approaches are discussed in light of
model species, age and duration of EDC exposure.

Keywords: arsenic, estrogenic endocrine-disrupting chemicals, growth, in silico, methods, microplastics,
plasticizers, reproduction
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INTRODUCTION

For more than a decade, a growing body of evidence has
demonstrated that anthropogenically introduced compounds
alter functions of the vertebrate endocrine system (1, 2). These
compounds have been termed “endocrine-disrupting chemicals”
(EDCs). EDCs, as defined by the U.S. Environmental Protection
Agency (EPA), are “exogenous compounds that interfere with
the processing and action of endogenous hormones involved in
the maintenance of homeostasis and regulation of development
(3). With the knowledge obtained from recent studies, the extent
of our understanding of how these chemicals exert their
endocrine interfering effects have expanded. From a
physiological point of view, EDCs are defined as natural or
synthetic compounds that disrupt the hormonal and
homeostatic systems that control how organisms communicate
with and respond to the environment (4). Based on the
consensus statement of La Merrill et al. (5), the key
characteristics of EDCs include: interaction with or activation
of hormone receptors; antagonistic effect on hormone receptors;
alterations of hormone receptor expression, hormone synthesis,
signal transduction in hormone-responsive cells, hormone
transport across cell membranes, hormone distribution or
circulating hormone levels, hormone metabolism or clearance,
fate of hormone-producing or hormone-responsive cells; and
induction of epigenetic modifications in hormone-producing or
hormone-responsive cells. Although, only mechanistic evidence
for a chemical can unequivocally classify it as an EDC, it is
sometimes difficult to exclude adverse endocrine effects that are
correlational in nature, especially from in vivo studies, and
confounding non-specific effects of a chemical on the
endocrine system that are not directly related to the mode of
action of EDCs as described above (i.e., cell toxicity, tissue injury,
and compensatory effects). Known EDCs include plastic
additives, plasticizers, industrial solvents/lubricants and their
byproducts, dioxins, alkyl phenols, pesticides, pharmaceuticals,
drugs, anabolic agents, and naturally occurring compounds.
These and additional examples of EDCs and their effects have
been comprehensively reviewed elsewhere (6–9). The growing
concern for EDCs has been focused on their effects on wildlife
and humans (10, 11). Data from human studies and rodent
models show that EDCs are implicated in male and female
reproductive development disorders (12–14), breast cancer
(15), prostate cancer (16, 17), and obesity (18–20). Together,
these studies not only underscore the significant public health
concern and costs associated with EDCs (21), but also justify
further in-depth investigation.

In aquatic environments, fish have been a reliable indicator of
endocrine disruption, as they are among the first animals exposed to
waterborne pollutants. In contrast to stable sexual determination in
mammals, the process of sexual determination and differentiation in
fish can be influenced by environmental factors (22–26). The
developmental plasticity of sexual determination in fish make
them particularly vulnerable to environmental EDCs that pollute
waters they inhabit. Because hormone receptors play a major role in
the regulation of growth and reproduction, EDCs that bind these
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receptors (4) and exert agonistic or antagonistic actions can result in
abnormal endocrine functions (27). In rodents and amphibians,
dichlorodiphenyldichloroethylene (DDE)/dichlorodiphenyl
trichloroethane (DDT), diethylstilbestrol (DES), and bisphenol A
(BPA) bind both androgen and estrogen receptors (28–31). DDE,
DDT, kepone, methoxychlor, nonylphenol (NP), and
polychlorinated biphenyls (PCB), were found to have affinity to
the seven-transmembrane receptor, G-protein-coupled estrogen
receptor (GPR30), in human embryonic kidney 293 (HEK293)
cell lines (32). In mammals and zebrafish, BPA, phthalates, DDT,
polybrominated diphenyl ethers (PBDE), and PCB can bind and
alter the expression of peroxisome proliferator-activated receptor
(PPAR), a protein which plays a critical role in regulating
metabolism, affecting lipid metabolism and reproduction (33–35).
In fish, EDCs are known to affect fertility, sexual maturation,
somatic growth, stress responses and induce cellular damage,
largely through alterations in the levels of hormones and their
receptors (36–42). Some EDCs are reported to bioaccumulate in fish
(43, 44) and shown to be transferred to offspring through the
transfer of lipids from yolk to embryo (45–47). The pathways
through which EDCs can impact the physiology of organisms are
not only a result of their ability to bind receptors (5). The high
sensitivity of larval fish to EDCs due to their developing endocrine
system (48, 49) underscores the need to specifically address the
effects of early-life exposures to environmental chemicals through
targeted approaches. Chemicals found in municipal and industrial
wastewater discharges are found to be the most common EDCs of
concern for aquatic life (50, 51). The natural and synthetic steroid
estrogens, 17b-estradiol (E2), and 17 a-ethinylestradiol (EE2), and
alkyl phenols such as nonylphenol (NP) are among the most
pervasive EDCs found in the aquatic environment (52–56). These
chemicals are commonly found in sewage effluent discharged into
rivers (57) and affect fish at concentrations, that range from 4.5 to 25
ng/L and 0.84 to 200 µg/L, respectively (58–61). EE2, a primary
estrogen component of most oral contraceptive pills, is discharged
through municipal wastewater. Because EE2 cannot be effectively
removed by the treatment process, it contaminates other clean water
sources that mix with treated water (62, 63). Nonylphenol
ethoxylates (NPEs), widely used as surfactants in industrial
processes and products, are also discharged through domestic and
industrial wastewater (64, 65). NP, a degradation product of NPE,
persists in the environment and has been determined to reduce
fecundity and fertility in Japanese medaka (Oryzias latipes) (66),
lower plasma testosterone (T) in male carp (Cyprinus carpio) (67),
reduce male to female ratios in wild tilapia (Oreochromis niloticus)
(68), and decrease in gonadosomatic index (percentage of gonad
weight per body weight, GSI) and developmental delay in courtship
behavior in male guppy (Poecilia reticulata) (69). Heavymetals have
also been found to contaminate the environment (70) and act as
endocrine disruptors (71–73). In particular, arsenic pollution has
posed serious risk to aquatic organisms due to its widespread
presence in aquatic environments (74–77). Arsenic has been
shown to disrupt the endocrine system in rodents, chicken, and
fish (78–81). BPA and phthalates, two of the most popular chemical
building blocks in the plastics industry, are ubiquitous
environmental pollutants (82, 83). BPA has been found to leach
February 2021 | Volume 11 | Article 619361
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from dental sealants (84), tin cans (85), and food packaging (86, 87).
Phthalates can leach from food packaging (87), alcoholic beverages
(88), PVC flooring (89), personal care products (90), and medicinal
products (91, 92). Thus, these chemicals can be easily released into
water bodies that ultimately affect aquatic animals. A number of
studies suggest that these plasticizers induce developmental
impairment via thyroid and growth hormone axes, and impact
reproduction in mammals and aquatic species (93). More recently,
microplastic (MP) contamination has become a growing global
concern (94). MPs are defined as plastic that is less than 5 mm in
diameter (95) resulting from the breakdown of larger plastics that
are degraded (96), or frommanufactured plastic microbeads present
in scrubbing agents and personal care products. MPs have been
reported to be ubiquitously present in open oceans (95, 97, 98),
estuaries (99), beaches, surface waters, and marine sediment (95,
100–102). Although there is no evidence that MPs directly act as
EDCs on organisms, indirect effects found may be linked to
chemicals, including plasticizers, that are adsorbed or leached
from MPs. Nonetheless, the heightened concern over the effects
of MPs as carriers of EDCs in fish still warrants thorough
investigation of this emerging class of environmental
contamination. Reports on the ingestion of MPs by aquatic
animals, including fish (103–106), further drive efforts to
understand the physiological effects of harmful chemicals leaching
from MPs. Despite the plethora of known EDCs, we focus this
review on the six categories of chemicals above to underscore the
diversity of approaches employed to characterize their effects in fish.

While substantial progress has beenmade toward the assessment
of the effects of EDCs in fish, a number of experimental
considerations provide distinct paths for interpreting the
mechanisms of action and physiological consequences of exposure
to these chemicals. For example, exposing an adult fish to EDCs
may have very different consequences compared with exposing fish
at an early-life stage or at a developmentally critical stage. Moreover,
the effects of EDCs may not be limited to the exposed individual but
also extend to its progenies. Hence, approaches have ranged from in
vivo assessments of the impact of EDCs during early-life and adult
stages, along with long-term and transgenerational effects, to in vitro
assays designed to characterize the direct effects of putative EDCs
along with their affinity to hormone receptors, to in silico predictive
models that integrate an array of pathways sensitive to EDCs. Some
studies that have employed these different approaches are listed in
Table 1 to provide a brief synopsis of the topics discussed in the
following sections. Focusing on the disruption of growth and
reproduction in fish, our aim here is to provide a brief overview
of the approaches and experimental designs commonly employed to
assess the effects of some of the pervasive and emerging EDCs, and
to highlight the need of a strategy that considers combining the
diverse approaches to study the adverse effects of EDCs on
aquatic wildlife.
IN VIVO STUDIES

Laboratory studies are used to confirm the correlational
relationship between chemical pollutants in the environment
Frontiers in Endocrinology | www.frontiersin.org 3
and malformations or dysfunction observed in fish in the wild.
The variety of approaches that are used reflects the diversity of
fish species, their natural habitat, and the broad range of EDCs
that they are exposed to. Each approach is most effective for
addressing one particular question depending on the specific life
history and habitat of each species, and the type of chemical fish
are exposed to. These in vivo approaches employ a wide variety
of experimental protocols, including exposure to chemicals
presented in the water, those added to the diet, or compounds
delivered through intraperitoneal injection. Exposure periods
vary and concentrations of compounds used are either based
on the levels found in the environment, those that elicit a
physiological response or both. Fish models also differ among
these studies, and can be generally subdivided by size into large
and small fish species. Examples of the former include salmonids,
tilapia, and bass, while the latter encompass zebrafish, medaka,
and guppies. Larger fish models usually bear economic
importance, include species of more relevance to aquaculture
and conservation studies and can provide sufficient sampling of
tissues for various types of analyses, but have longer life spans,
require larger areas for rearing and trials and relatively higher
maintenance costs. On the other hand, small fish models have a
short life span, rapid development and reproductive rates, and
low maintenance and husbandry costs, which provide versatility
to their use as research models; their small size, however, limits
the amount of various tissues and organs for analyses. Regardless
of size class and experimental limitations, however, the rapid
expansion in genomic approaches have allowed for the analysis
of multiple fish species at various life-stages as models for
investigating the effects of EDCs. This section will present
various in vivo approaches for assessing the effects of EDCs on
growth and reproduction taking into account differences
between age, life stage, sex, exposure time and the fact that
EDCs may affect not only the individual directly exposed to it,
but also its progeny (4, 167–169). Among the commonly
employed indicators for monitoring reproductive responses to
EDC exposure in fish are GSI plasma sex steroid levels,
steroidogenic enzymes, estrogen and androgen receptors (Er
and Ar, respectively), and vitellogenin (VTG). VTG, an
estrogen-dependent yolk protein precursor, is a common
biomarker for exposure to estrogenic compounds. In normal
conditions, VTG is present only in females, but males may
express VTG in response to environmental estrogens and
commercial diets containing estrogens (170). The actions of
both natural steroid hormones and exogenous hormone
mimics are mediated by steroid hormone receptors (171, 172).
The synthesis of VTG is stimulated by activation of estrogen
receptors (ERs) (173–176). Hence, VTG and ERs have been
widely used in both in vivo and in vitro experimental designs to
assess the effects of EDCs (172, 177–184). The growth hormone
(GH)/insulin-like growth-factor (IGF) axis is the principal
endocrine system regulating the growth and development of
vertebrates, including teleosts (185, 186). GH stimulates the
production of IGFs upon binding to its receptor, GHR; both
GH and IGFs promote growth in target tissues (187–191). IGF
binding proteins (IGFBPs), modulate the actions of IGFs by
February 2021 | Volume 11 | Article 619361
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TABLE 1 | List of studies used to analyze endocrine disrupting effects of NP, EE2, BPA, phthalates, arsenic, and microplastics with the corresponding approaches and
endpoints.

Reference Approach Duration Species EDC Endpoints

(107) In vivo, sub-adult/
adult, waterborne

15–30 days Colisa fasciatus Arsenic Oocyte development, number and diameter of follicle nucleoli,
follicular atresia

(108) In vivo, sub-adult/
adult, waterborne

15–30 days Colisa fasciatus Arsenic Testicular development, Leydig cell diameter,
testicular necrosis and pyknosis

(109) In vivo, sub-adult/
adult, waterborne

3 weeks Oncorhynchus mykiss EE2, NP Plasma VTG, testicular growth

(110) In vivo, early-life, i.p.
injection

30 days Salmo salar NP HSI, plasma VTG

(111) In vitro, binding assay,
cell/organ culture

48 h (hepatocyte
culture)

Oncorhynchus mykiss NP ER affinity, hepatocyte vtg

(112) In vivo, sub-adult/
adult, early-life,
waterborne

3–60 days Xiphophorus helleri NP, BPA Growth, hepatic vtg, reproductive damage

(113) In vivo,
transgenerational,
waterborne

164 days Pimephales promelas BPA F0 body length and body weight, plasma VTG; F1 egg
production and hatchability

(114) In vitro, binding assay 48 h Oncorhynchus mykiss EE2, NP,
sewage
treatment
effluent

Estrogenic activity

(115) In vivo, early-life,
waterborne

I year Oncorhynchus mykiss NP Hepatic VTG, ZRP

(116) In vivo,
transgenerational,
waterborne

3 months (10
days/month)

Oncorhynchus mykiss NP Hatching rate; intersex; plasma E2, T, and VTG

(117) In vivo, sub-adult/
adult, waterborne

3 weeks Oryzias latipes NP Egg production, fertility, GSI, plasma VTG,
spermatogenesis, testis-ova

(118) In vitro, cell/organ
culture, binding assay;
in vivo, early-life,
waterborne

3 days (cell/organ
culture); eggs to
sexually mature

fish

Oncorhynchus mykiss,
Cyprinus carpio (in vitro); Danio
rerio (in vivo)

EE2 VTG, ER

(119) In vivo, early-life,
waterborne

5 days Salmo salar NP Body weight, plasma IGF1

(120) In vitro, cell/organ
culture

4 days Abramis brama, Cyprinus
carpio

EE2 VTG

(121) In vivo, sub-adult/
adult, waterborne

4 weeks Oreochromis mossambicus Arsenic Growth rate

(122) In vitro, binding assay;
in vivo, sub-adult/
adult, waterborne

3 weeks (in vivo) Danio rerio EE2, NP Plasma VTG, GSI, estrogenicity

(123) In vitro, cell/organ
culture

15–30 days Anguilla japonica NP Spermatogenesis progress, morphology of
testicular cells

(124) In vivo, sub-adult/
adult, waterborne

24–168 h Danio rerio EE2 Plasma VTG, E2 and T; cell growth-
related genes, hormone metabolism;
steroid binding; sterol metabolism; lipid metabolism, hepatic
igf2 and igfbp1

(66) In vivo,
transgenerational,
waterborne

21 days Oryzias latipes NP Egg production, fertility, hatchability, hepatic VTG,
time to hatching

(125) In vivo, early-life,
waterborne

3–6 days Oncorhynchus mykiss NP Hepatic vtg and era, brain gnrh2

(126) In vivo, sub-adult/
adult, waterborne

3 weeks Danio rerio EE2 Hepatic vtg, er, and igfbp1

(127) In vivo, early-life,
dietary

10–40 dpf Oreochromis niloticus EE2 Serum IGF-I, hepatic igf1, number of igf1-expressing
hepatocyes, pituitary gh, sex ratio, body length,
body weight

(128) In vivo, sub-adult/
adult, dietary

68 days Danio rerio Arsenic Egg production, hepatic vtg, % hatch rate, number
of spawns

(40) In vitro, cell/organ
culture

18 h, 6–15 days Anguilla japonica Arsenic Germ cell proliferation, apoptosis, DNA damage,
progesterone synthesis, 11-KT

(129) In vivo, early-life,
ovarian fluid

3 h Oncorhynchus mykiss BPA Growth, hatching, yolk-absorption, whole embryo GH levels,
ghr, igfs, and igf rs

(Continued)
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TABLE 1 | Continued

Reference Approach Duration Species EDC Endpoints

(130) In vivo, sub-adult/
adult, waterborne

3 weeks Danio rerio Phthalate GVBD, fecundity, ovulation; ovarian lhr, mPRb, ptgs2,
BMP15; plasma VTG

(131) In vivo, early-life,
waterborne

14–91 days Poecilia reticulata Phthalate Body weight, body length

(132) In vivo, sub-adult/
adult, waterborne

48 h Pimephales promelas EE2 Hepatic era and vtg, testicular ar and er, testicular
cyp17

(133) In vivo, early-life,
waterborne

embryo to swim-
up stage

Pimephales promelas EE2 Whole animal lh and vtg

(134) In vivo, sub-adult/
adult, waterborne

1–6 weeks Oryzias latipes EE2 Hepatic vtg and chg, oocyte marker 42Sp50, testis-ova,
zona pellucida related-genes

(135) In vivo, early-life, i.p.
injection

10 days Salmo salar NP Plasma IGF-I and GH

(136) In vivo, sub-adult/
adult, waterborne

1–6 weeks Oncorhynchus kisutch EE2 Gonadotropin and release-related contigs, hepatic vtg,
pituitary lhß

(137) In vivo, early-life,
waterborne

96 h Pimephales promelas Phthalate Whole animal E2 and T

(138) In vivo, sub-adult/
adult, dietary

60 days Micropterus salmoides EE2 Gonadal cyp19a, gonadal and hepatic er, plasma VTG,
HSI, GSI

(139) In vivo, early-life,
waterborne

4 days Salmo salar EE2, NP Hepatic and whole animal vtg, HSI, plasma VTG

(140) In vitro, binding assay,
cell/organ culture; in
vivo early-life,
waterborne

eggs -124 dpf (in
vivo)

Salmo trutta f. fario WWTPE AR, ER, VTG

(141) In vitro, binding assay – Carassius auratus, Cyprinus
carpio, Danio rerio,
Gasterosteus aculeatus,
Lepomis macrochirus,
Oryzias latipes, Pimephales
promelas, Poecilia
Reticulata, Rutilus rutilus

NP, BPA ERa transactivation

(142) In vivo, sub-adult/
adult, dietary

2 months Oryzias latipes MPs hepatic chg, era, vtg

(60) In vivo,
transgenerational,
waterborne

102 days Pimephales promelas EE2 offspring survival, juvenile production, reproductive capability

(143) In vivo,
transgenerational,
waterborne

7 days Oryzias latipes BPA, EE2 F2 fertilization rate, F3 embryo survival

(144) In vivo, early-life,
ovarian fluid

3 h Oncorhynchus mykiss BPA food conversion ratio, specific growth rate, whole animal gh,
ghr, igfs, igfr

(145) In vitro, cell/organ
culture

48 h Oncorhynchus mykiss EE2 er, vtg, ghr1, igfbp1

(146) In vivo, sub-adult/
adult, waterborne

15–30 days Carassius auratus Phthalate Sperm production, sperm motility and velocity, 11-KT,
testicular StAR

(147) In silico, molecular
docking

– Oryzias latipes BPA, NP architecture of ligand binding domains of ERs, formation of
hydrogen bonds with ER1

(148) In vivo,
transgenerational,
waterborne

6 months Danio rerio arsenic offspring body mass

(149) In vivo, sub-adult/
adult, waterborne

7 days Oreochromis niloticus NP anorexia

(150) In vivo, sub-adult/
adult, waterborne

15 days Danio rerio BPA egg production, fertilization success, hepatic and gonadal
genes involved in reproductive function and epigenetic
processes, global DNA methylation

(151) In silico, QSAR/
structural alerts

– – estrogenic
and
androgenic
chemicals

–

(152) In vivo, early-life,
waterborne

2–120 hpf Danio rerio BPA hatching time, numbers of GNRH3 neurons, whole animal
kiss1, kiss1r, gnrh3, lh, fsh, and er

(Continued)
Frontiers in E
ndocrinology | www.fron
tiersin.org
 5
 February 2021 | Volume 11 | Article 619361

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Celino-Brady et al. Experimental Methods for Testing EDCs
affecting their availability and activities (185, 192, 193). In
addition to morphological indicators of growth such as length,
weight and condition factor, the factors involved in the GH/IGF
system can therefore be applied as molecular markers for growth
and the assessment of the effects of EDCs on growth in fish. We
divide this section into studies that examine the effects of EDCs
on adult, subadult, larval stages, and across generations.

Sub-Adult/Adult Exposure
For decades, studies on the effects of EDCs have been geared
toward determining the relationship between environmental
chemical levels and the unnatural changes that lead to
morphological abnormalities observed in wild fish (194–198).
Many experimental approaches have focused on characterizing
Frontiers in Endocrinology | www.frontiersin.org 6
the effects of EDCs on sub-adult and adult fish. The large body
mass of sub-adult and adult fish allows for the collection and
analysis of numerous markers on several different tissues. On the
other hand, adult fish being equipped with fully differentiated
tissues and a well-developed endocrine system can more readily
compensate from the effects of exogenous agents at
environmental concentrations, thereby limiting the number of
observable EDC effects.

Many studies have subjected adult fish to prolonged periods
of EDCs exposure, while others have focused on short-term or
acute exposure protocols. Since there are many definitions of
chronic and acute exposure depending on the life cycle of the
organism being studied, in this review, we define periods of acute
exposure to EDCs as 1 week or less and sub-chronic/chronic
TABLE 1 | Continued

Reference Approach Duration Species EDC Endpoints

(153) In vivo,
transgenerational,
ovarian fluid

3 h Oncorhynchus mykiss BPA F1 body mass, epigenetic modifications

(42) In vivo, early-life,
waterborne

4 days, 21 days Salmo salar EE2, NP hepatic vtg, era, ghr, igf1 and igf2, igfbps; body mass,
plasma GH and IGF1; total length

(154) In vivo, early-life,
waterborne

7 days Acanthochromis polyacanthus MPs body mass

(155) In silico, QSAR/
structural alerts

– – chemicals
affecting
ovarian
development

–

(156) In silico, QSAR/
structural alerts

– – EDCs
affecting fish

prediction of toxicity and ER binding

(157) In vivo, early-life,
waterborne

21 days Oreochromis mossambicus NP HSI, hepatic era, erb, igf1, igfbp1b, igfbp2b

(158) In silico, molecular
docking

– Danio rerio BPA, NP interaction potential to ERa

(159) In vivo, early-life,
waterborne

2–4 weeks Platichthys stellatus arsenic length and weight gain, condition factor

(160) In vivo,
transgenerational,
waterborne

60 days Oryzias melastigma MPs F0 gonadal maturation, plasma E2 and T, GSI, HSI, hepatic
vtg and chg, gonadotropins, and steroid synthesis-related
genes, F1 hatching rate and body length

(161) In vivo, early-life,
waterborne

30 days Carassius auratus BPA brain gnrh, fshb and lhb, GSI, 11-KT, gonadal maturation,
testicular ar

(162) In silico, molecular
docking; in vivo, sub-
adult/adult,
waterborne

14–28 days (in
vivo)

Goodea atripinnis BPA ovary foxl2, interaction with residues in foxl2

(163) In vivo,
transgenerational,
waterborne

8 hpf–21 dph Menidia beryllina EE2 F0 follicle atresia, sex ratio, 17b-hsd, brain cyp19b; F1
hatching success, larval length, egg production; F2 larval
survival rate, larval length; methylation of 17b-hsd and ar
across generations

(164) In vivo,
transgenerational,
waterborne

8 hpf–21 dph Menidia beryllina EE2 biological processes and pathways representative of
growth and reproduction; methylation of hormone
receptors, steroidogenesis and sexual development-
related genes across generations

(165) In vivo, sub-adult/
adult, waterborne

3 weeks Salmo trutta caspius NP plasma E2, T and FSH

(166) In vivo, early-life,
waterborne

embryo- 120 hpf Danio rerio arsenic whole animal GH, ghr, igf2, igfbp3, igfbp2a, igfbp5b
ar, androgen receptor; BMP15, bone morphogenetic protein-15; BPA, bisphenol A; chg, choriogenin; cyp17, cytochrome P-45017; cyp19b, cytochrome P450 aromatase; dpf, days post
fertilization; dph, days post hatch; E2, 17b-estradiol; EE2, 17a-ethinylestradiol; Er, estrogen receptor; foxl2, forkhead box protein L2; fsh, follicle-stimulating hormone; gh, growth hormone;
ghr, gh receptor; gnrh, gonadotropin-releasing hormone; GSI, gonadosomatic index; GVBD, germinal vesicle breakdown; hpf, hours post fertilization; 17b-hsd, 17b-hydroxysteroid
dehydrogenases; HSI, hepatosomatic index; igf, insulin-like growth factor; igfr, igf receptor; igfbp, insulin-like growth factor binding proteins; 11-KT, 11-ketotestosterone; kiss1,
kisspeptin1; kiss1r, kiss1 receptor; lh, luteinizing hormone; lhr, lh receptor; MPs, microplastics; mPRb, progesterone receptors; NP, nonylphenol; ptgs2, cyclooxygenase (COX)-2; StAR,
steroidogenic acute regulatory protein; T, testosterone; vtg, vitellogenin; zrp, zona radiata protein.
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exposure as more than 1 week to several months or years,
regardless of the life-stage. In both paradigms, exposure to
EDCs typically occur through waterborne exposure, diet or
intraperitoneal injection. Physiological responses of fish may
vary with different routes of exposure since this could affect
bioaccumulation and/or bioavailability of contaminants.
Bioaccumulation through these different routes may differ
since the co-determinants for bioaccumulation are the various
elimination mechanisms. For instance, accumulation of a
waterborne contaminant by a non-dietary route can be
alleviated by direct equilibrium exchange of the contaminants
at the gill epithelium. Thus, dietary exposure may be
quantitatively different from aqueous exposure (199). This
difference, however, would still be life-stage dependent.

Acute Exposure
Acute exposure experiments evaluate EDCs that can elicit effects
within a short period of time. This approach also allows
investigators to obtain results expeditiously, thereby reducing
cost of maintenance. The drawback of this method, however, is
that it may overlook effects that are only apparent after a long
period of exposure. Moreover, acute exposure of EDCs might not
be suitable for adults of many larger fish species as they tend to
have greater tolerance to chemical exposure, especially at low
doses. Studies employing this approach are discussed below.

Reproduction
Because impairments in sexual development were among the first
physiological effects to be observed as a result of exposure to EDCs,
many studies on fish have focused on reproductive endpoints.

Experimental approaches employing acute exposure have
been effective at detecting disruptive effects of NP and EE2 in
adult fish. In reproductively mature male fathead minnows
(Pimephales promelas) exposed to EE2 for 48 h, hepatic er
alpha (era) and vtg, and testicular ar and er were upregulated,
while the testicular steroidogenic enzyme cytochrome P-45017
(cyp17) was downregulated (132). Aqueous exposure of gravid
female zebrafish to EE2 elevated plasma VTG, reduced plasma
E2 and T after 24 or 48 h, and affected the expression of genes
involved in hormone metabolism, steroid binding, sterol
metabolism, and cell growth in the liver after 24 and 168 h
(124). A 1-week exposure to EE2 of sub-adult coho salmon
(Oncorhynchus kisutch), increased hepatic vtg and pituitary
luteinizing hormone (lh) b subunit mRNA, and induced
gonadotropin-releasing hormone (gnrh) receptor contig in
females (136). Adult male Swordtail fish (Xiphophorus helleri)
exposed to NP and BPA for 3 days induced hepatic vtg mRNA
expression and reproductive damage (112).

Growth
Assessments of acute exposure effects of EDCs in adult fish focus
mainly on reproduction. Not many of these studies have focused
on growth, however. Nile tilapia (Oreochromis niloticus) adult
exposed to NP for 7 days exhibited anorexia (149). In gravid
female zebrafish, gene ontology (GO) analysis showed that
aqueous treatment with EE2 either downregulated or
upregulated genes involved in the regulation of growth.
Frontiers in Endocrinology | www.frontiersin.org 7
Specifically, gene expression of igf2 decreased by 24 and 168 h,
while igfbp1 was increased by 24 h and either decreased or
increased by 168 h depending on the doses of EE2 (124). Genes
involved in processes related to metabolism and lipid metabolism
were downregulated by 168 h (124).

Generally, these acute exposure approaches on growth have
mainly employed molecular marker targets, as changes in
morphology or phenotype usually manifest after long periods
of exposure.

Sub-Chronic/Chronic Exposure
Long-term exposure experiments represent a powerful tool to
test EDCs that affect animals after a prolonged period. This
approach better reflects the actual exposure of animals in the
environment compared with acute exposure experiments.

Reproduction
Similar to acute exposure experiments, a large number of studies
characterize the sub-chronic and chronic effects of EDCs on
reproduction in adult fish. For instance, waterborne exposure of
fish to NP or EE2 for 3 weeks increased plasma VTG and
suppressed testicular growth in adult male rainbow trout,
(Oncorhynchus mykiss) (109). In adult male and female Japanese
medaka (Oryzias latipes), exposure of up to 6 weeks to EE2 or NP
induced testis-ova in males, hepatic vtg and choriogenin (chg),
ovarian development-related genes in testis, reduction in GSI in
males, and decreased egg production and fertility (117, 134).
Similarly, in sub-adult coho salmon, a 6-week exposure to EE2
increased hepatic vtg and pituitary lhß subunit mRNA, decreased
follicle-stimulating hormone (fsh) b subunit mRNA, and induced
gonadotropin synthesis and release-related contigs in females (136).
A 3-week exposure of male and female Caspian brown trout (Salmo
trutta caspius) to water containing NP resulted in increased levels of
plasma E2 and decreased T and FSH levels in both sexes (165).
Zebrafish exposed to EE2 for 3 weeks induced hepatic vtg and er
mRNA expression (126). In a 60-day dietary exposure study, EE2-
fed female largemouth bass (Micropterus salmoides) exhibited
decreased plasma VTG, hepatosomatic index (HSI) and GSI, and
increased hepatic and gonadal er, and gonadal aromatase (cyp19a)
transcripts (138). Induction of forkhead box protein L2 (foxl2), a
gene which play a role in ovarian differentiation and in maintenance
of ovarian functions in mammals and fish (200–202), was observed
after 14 and 28 days of exposure to BPA in females, and after 28
days in males of killifish (Goodea atripinnis) (162). Breeding groups
of zebrafish treated with BPA for 15 days exhibited increased egg
production, reduced fertilization success, alterations in levels of
genes involved in reproductive function and epigenetic processes
and reduction in global DNA methylation in both liver and gonad
tissue (150). Sperm production, motility and velocity, 11-
ketotestosterone (11-KT), and testicular steroidogenic acute
regulatory protein (StAR) were reduced following a 15 or 30-day
exposure to phthalate in mature male goldfish (Carassius auratus)
(146). Female zebrafish exposed to phthalate for 3 weeks exhibited a
decrease in ovulation, fecundity, and germinal vesicle breakdown; a
decrease in ovarian lhr, progesterone receptors (mPRb), and
cyclooxygenase (COX)-2 (ptgs2); and an increase in plasma VTG
andovarianbonemorphogeneticprotein-15 (BMP15)protein (130).
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In vivo studies testing the chronic effects of arsenic have also been
effective at revealing disruption of reproduction in fish. In banded
gourami (Colisa fasciatus), exposure to arsenic for 15 or 30 days,
revealed decreased development of oocytes, decreased numbers
and diameter of nucleoli, and increased numbers of atretic follicles
in females (107). In a similar study, males were observed to have
degenerative changes in the testicular lobules, reduction in the
diameter of Leydig cells, and necrosis and pyknosis in testis (108).
Female zebrafish fed with polychaete worms laden with metals
including arsenic for 68 days showed a decrease in hepatic vtg
transcripts, cumulative egg production, number of spawns,
number of eggs per spawn, and % hatch rate (128).

Since it has only been recently that the risks of MP pollution
and their associated chemicals have raised concern, there have
been very limited studies on their effects, particularly on
reproduction. In one of these studies, feeding adult Japanese
medaka with diets containing 10% by weight marine-treated
polyethylene virgin pellets for 2 months downregulated hepatic
chg gene expression in males and hepatic vtg, chg and era gene
expression in females (142). Although this study only shows the
effects of plastic treated with marine water, it suggests that MPs
at environmentally relevant concentrations may indirectly alter
endocrine system function in adult. A detailed overview of the
studies conducted on the various effects of MPs on aquatic
organisms can be found elsewhere (203).

Growth
While most research has focused on reproduction as an endpoint of
EDC’s chronic effects, a limited number of studies have examined
growth effects of selected EDCs in fish. Only few studies have been
conducted so far on the effects of prolonged exposure to NP and
EE2 on growth of sub-adult or adult fish. Nevertheless, some studies
clearly showed effects of these EDCs on biomarkers of growth. For
instance, in adult zebrafish exposed to EE2 for 3 weeks, hepatic
igfbp1 mRNA was downregulated (126). In a chronic arsenic
toxicity study in the euryhaline and warmwater fish, Mozambique
tilapia (Oreochromis mossambicus), aqueous exposure to sodium
arsenite for 4 weeks decreased the growth rate of males in a dose-
dependent manner (121).

Overall, these chronic and sub-chronic in vivo exposure
approaches are capable of detecting not only the changes in
the expression of growth and reproductive genes and proteins,
but also phenotypic alterations associated with the exposure of
sub-adults and adults to EDCs.

Early-Life Exposure
Examining the effects of EDCs during early life stages allows for
the detection of abnormalities across the lifespan of fish, helping
to clarify the sensitivity to specific chemicals during larval stages
and long-term developmental effects. In some early-life stage
experimental approaches, for example, the long-lasting effects of
EDCs can be examined either right after exposure and/or after a
period of depuration, even after fish have reached an adult stage.
An example of an early-life, in vivo approach illustrating the
methodology used for exposing Mozambique tilapia fry to NP
and E2 and sampling after depuration is shown in Figure 1.
Approaches employing larval fish also reduce the experimental
Frontiers in Endocrinology | www.frontiersin.org 8
footprint, or the effort and costs associated with the study, as they
usually require smaller rearing and exposure containers (Figure
1). The lower the experimental footprint, the lower the effort and
costs to conduct the study. In some studies, even petri dishes
have been used for exposure experiments (133, 143). For acute
exposures, however, particularly during very early stages the
small size of the fish will restrict the amount and type of tissue
samples and thereby limit the number and specificity of targets
that can be used for analyses. It can also be difficult, if not
impossible, to identify and separate sexes at early stages of
development. In some cases, the challenge of having a limited
amount of tissue was resolved by using the whole animal (133,
139, 166), although with this approach it is not possible to specify
the organ or tissue from which gene expression or protein levels
originate. In this case, methods such as in situ hybridization can
be carried out in parallel to determine the expression patterns in
different organs. If the whole animal is used, however, it is not
possible to conduct this analysis in the same fish from which
gene expression was determined. Moreover, determining the
effects of separate sexes can be achieved by allowing the fish to
grow to a stage by which sex can be identified. The high mortality
rates during early developmental stages in fishes (204) also
present a further challenge to this experimental strategy.

Acute Exposure
Acute exposures in early-life stages like in adult stages can cut
down experimental footprints. Conducting this approach during
very early stages, however, would make the size of the fish as a
drawback limiting the number and specificity of biomarkers that
can be analyzed. Below are some of the representative studies
that used this type of exposure method.

Reproduction
Relatively short-exposure periods (days) were conducted in
salmonid species. After 3 or 6 days of exposure to NP, hepatic
vtg and era mRNA levels were increased, while brain gnrh2
mRNA were reduced in a dose-dependent manner in juvenile
rainbow trout (125). Moreover, exposure to EE2 and NP for 4
days, elevated vtg transcripts in yolk-sac larvae, fry and smolts,
and increased plasma VTG and era mRNA levels in Atlantic
salmon (Salmo salar) smolts (42, 139). An interesting experiment
in which rainbow trout oocytes were exposed to BPA for 3 h in
ovarian fluid so as to mimic maternal transfer, resulted in delay
in hatching and yolk-absorption in embryo (129). Low levels of
BPA exposure at 2 h post fertilization (hpf) to 120 hpf caused
advanced hatching time, increased numbers of GNRH3 neurons
and increased expression of reproduction-related genes such as
kisspeptin1 (kiss1) kiss receptor, (kiss1r), gnrh3, lh, fsh, and er in
zebrafish larvae (152). In fathead minnow, sex steroid hormones
(E2 and T) either increased or decreased after 96 h exposure of
eggs to different types of phthalates (137).

Growth
Acute exposure of Atlantic salmon smolts to EE2 or NP for 4
days also impacted growth. EE2 diminished plasma GH and
IGF1 levels in parallel with reductions in hepatic ghr and igf1
(42). Smolt weights and plasma IGF-I levels were reduced by NP
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by 5 days of exposure (119). Rainbow trout embryo exposed to
BPA for 3 h as oocytes exhibited growth impairment, increase in
GH levels, and lower gene expression ghr, igfs and igf receptors
(igfrs) (129). In a similar experiment, a decrease in the specific
growth rate and food conversion ratio in rainbow trout larvae
reared from BPA-treated eggs were observed. BPA also disrupted
the mRNA levels of gh isoforms, ghr, igfs, igfr in a life stage-
dependent manner (144). Zebrafish embryos exposed up to 120
Frontiers in Endocrinology | www.frontiersin.org 9
hpf to arsenic had elevated GH levels, and reduced whole body
ghr, igf2, igfbp3, igfbp2a, and igfbp5b (166). Although there is
insufficient knowledge on the effects of MPs on growth, a one-
week acute exposure study showed that growth was negatively
affected by MPs in juvenile spiny chromis damselfish
(Acanthochromis polyacanthus) (154). Nonetheless, the
reduction in growth as a consequence of a reduction in feeding
cannot be explicitly ruled out in this study. More studies
FIGURE 1 | Schematic illustration depicting an experimental design of an in vivo exposure study aiming to assess the long-term developmental effects of early-life
exposure to EDCs in fish [adapted from Celino-Brady et al. (157), with author’s permission]. This can be customized for a wide variety of species and EDCs. Yolk-
sac fry are first allowed to acclimate to the experimental tanks and are then exposed to chemicals after partial or full yolk-sac resorption. Following the exposure to
EDCs, fish are reared in EDC-free water (depuration) before sampling. In this experimental set up, both header and fish tanks are lined with modified
polytetrafluoroethylene (MPTFE) to prevent the leaching of chemicals from the plastic containers. E2, 17b-estradiol; NP, nonylphenol. Black squares = aeration, white
rectangles = pipes.
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designed to elucidate the direct effects and modes of action of
MPs on growth are needed.

Sub-Chronic/Chronic Exposure
Chronic exposure approaches, although an effective tool for
assessment of EDCs with delayed effects, have their own
disadvantages if conducted during early stages of development.
For example, prolonged exposure to chemicals can magnify the
high mortality rates that are already a natural challenge during
early-life development in fishes.

Reproduction
There have been more studies performed on the chronic early-
life exposure effects of EDCs on the reproduction of fishes when
compared with investigations of acute early-life effects. Long-
term exposure (1 year) of rainbow trout to NP, from eyed-egg to
the juvenile stage, resulted in the elevation of hepatic VTG
expression and zona radiata protein (ZRP) (115). In a similar
approach, fathead minnow embryos were continuously exposed
to EE2 until swim-up stage, resulting in an increase in lh and vtg
(133). Immature mixed sex Atlantic salmon injected with E2 or
NP had higher HSI and elevated levels of plasma VTG by 30 days
(110). In the same species, juvenile exposure to waterborne NP
for 21 days induced plasma VTG in both males and females (36).
Exposure of Atlantic salmon fry to EE2 or NP for 21 days
resulted in increased hepatic vtg mRNA levels and decreased
hepatic era mRNA levels (42). In Mozambique tilapia, exposure
of yolk-sac fry to waterborne NP for 21 days also resulted in
alterations in reproductive-related genes. Specifically, a decrease
in HSI, and stimulation of hepatic era and erb were observed in
adult male fish 112 days after the end of the early-life exposure
period (157). In Nile tilapia fry fed diets containing EE2 from 10–
40 days post fertilization (dpf), sex ratio become skewed towards
females (127). Three-month old goldfish subjected to aqueous
exposure to BPA for 30 days demonstrated diminished ovarian
maturation, decreased brain gnrh, fshb and lhb in females, and
reduced GSI and testicular ar levels in male. Moreover, a
decrease in 11-KT levels were also observed in BPA-exposed
fish. The disruption of testicular development was not recovered
after BPA withdrawal (161).

Growth
When fish are subjected to long-duration treatments with EDCs,
their growth or growth-related physiological markers are also
altered. Dietary exposure of Nile tilapia fry to EE2 from 10–40
dpf decreased serum IGF-I, hepatic igf1 mRNA, the number of
hepatocytes expressing igf1, and pituitary gh by 75 dpf. Both body
length and weight also decreased after 90 to 165 dpf (127). In
Atlantic salmon, fry subjected to waterborne EE2 or NP exposure
for 21 days had decreased hepatic ghr, igf1 and igf2mRNA levels,
reduced body mass and total length, and varying effects on
various igfbp transcript levels (42). Intraperitoneal injection of
NP or E2 within a 10-day period in Atlantic salmon smolts
decreased both plasma IGF-I and GH levels (125). Following a
21-day exposure of Mozambique tilapia yolk-sac fry to
waterborne NP, stimulation of hepatic igf1, igfbp1b, and igfbp2b
in adult male fish exposed as yolk-sac fry was observed (157).
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Sixty-day exposure of juvenile swordtail fish to both NP and BPA
significantly reduced growth (112). Continuous exposure of less
than one-week-old guppy (Poecilia reticulata) to phthalate for
14–91 days reduced body weight and body length (131). In
juvenile starry flounder (Platichthys stellatus), daily length and
weight gain, and condition factor decreased following 2 and 4
weeks of aqueous exposure to arsenic (159).

While these studies subjected fish to relatively long-term
exposures (several weeks), the main difference between
experimental designs is that most of the studies analyzed the
effects of EDCs immediately following exposure (36, 42, 115,
133), while some assessed the effects of EDCs after a period of
depuration in which fish were no longer fed with EDC-
containing feed or moved to EDC-free water (127, 157).
Notwithstanding, all of these studies showed significant
changes in biomarkers of growth and reproduction following
exposure to EDCs. In summary, studies employing both acute
and chronic exposure protocols on fish at early-life stages were
effective at detecting various impacts of EDCs on growth
and reproduction.
Transgenerational Studies
A number of studies in fish provide evidence of the disruptive
effects of EDCs that span across parental and filial generations.
Evidence from recent studies suggests that exposure to EDCs can
directly impact not only the exposed individual, but also unexposed
future progenies. This process is called transgenerational
inheritance (167, 169). Transgenerational experiments only
involve exposure of the parental or F0 generation to EDCs, with
no exposure of subsequent generations. This can provide
information on both direct and indirect consequences of EDC
exposure. Furthermore, transgenerational effects are not limited to
epigenetic changes such as DNA methylation, histone
modification, and expression of non-coding RNAs (205) but also
include the effects of the direct transfer of compounds via egg yolk
and oocyte reserves. The main outcomes of determining the effects
of parental exposure to EDCs on offspring have been highly
variable and not strictly limited to endpoints of growth and
reproduction. Our discussion focuses on the growth and
reproduction-related biological markers and epigenetic changes.
Moreover, only few studies employing a transgenerational
approach have been conducted on the EDCs included in this
review, hence this section is divided into acute and sub-chronic/
chronic exposure.

Acute Exposure
Acute exposures to EDCs have been shown to affect filial
generations in transgenerational studies. In Japanese medaka,
aqueous EE2 and BPA treatments of late blastula stage for 7 days
resulted in reduced fertilization rates in the F2 generation, and
decreased embryo survival in F3 offspring (143). In vivo
treatment of rainbow trout F0 oocyte with BPA for 3 h caused
reduction in body mass in F1 generation. The long-term changes
seen in the liver transcriptome of progenies raised from BPA-
exposed eggs suggest epigenetic modifications (153).
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Sub-Chronic/Chronic Exposure
In rainbow trout, male and female adults exposed to NP for 3
months induced an increase in plasma VTG in parental (F0)
males, reduced hatching rates of eggs from F0 parents and
elevated intersex frequency, and hormonal imbalance in male
and female offspring (116). Exposure of adult Japanese medaka
male and female pairs to NP for 21 days resulted in reduced egg
production and fertility, elevated hepatic VTG levels in F0 males,
and reduced hatchability and time to hatching of the F1
generation (66). In fathead minnow, rearing adult males and
females in tanks with EE2 for 102 days caused reductions in F0
male survival and F1 juvenile production, reproductive failure or
reduced reproductive capability in F1 adults and reduction in
survival rates of F2 offspring (60). In inland silversides (Menidia
beryllina), exposure to low levels of EE2 from 8 hpf to 21 days
post hatch (dph), led to a female-biased sex ratio, higher number
of atretic follicles, reduced 17b-hydroxysteroid dehydrogenases
(17b-hsd), and increased brain cytochrome P450 aromatase
(cyp19b) in the F0 generation. In the F1 generation, hatching
success increased, while larval length, and egg production
decreased. Larval survival rate was reduced and larval length
increased in the F2 generation. Moreover, differential
methylation of 17b-hsd and ar was found across generations
(163). A similar study on the same species exposed to EE2 up to
21 dph, revealed changes in biological processes and pathways
involved in growth, development and reproduction as assessed
by GO and pathway analyses, and methylation of hormone
receptors, steroidogenesis, and sexual development-related
genes across generations (164). In fathead minnow, BPA
inhibited body length and body weight in F0 males after up to
164 days of exposure. Plasma VTG levels in F0 parents were also
elevated after 164 days of exposure. Egg production and
hatchability were inhibited in the F1 generation after 164-days
exposure (113). Furthermore, zebrafish chronically subjected to
waterborne arsenic for 6 months had progeny whose body mass
was lower than those from untreated parents (148). Marine
medaka (Oryzias melastigma) exposed for 60-days to MPs
showed a number of deleterious effecs including: 1) retardation
of gonadal maturation, reduced plasma E2 and T, and decreased
GSI of F0 female fish; 2) decrease in HSI and GSI in F0 males; 3)
varying effects on gonadotropins and steroid synthesis-related
genes in F0 parents; 4) increase in hepatic vtg and chg in F0
males; and 5) decrease in hatching rate and body length in
progeny (160). As seen with other aforementioned MP studies,
these effects may only be possible due to the leaching of
plasticizers or to non-endocrine disrupting mechanisms, such
as cell-toxicity, tissue-injury, or feeding inhibition.

The results from these transgenerational experiments show that
acute EDC exposures are enough to induce transgenerational effects
when parents are exposed at early stages. On the other hand,
experiments carried out during adult stages may require longer
exposure periods (weeks or months) to reveal transgenerational
changes. Remarkably, these studies show that both F1 fish exposed
to EDCs indirectly as primordial germ cells within F0 parents, and
F2 animals not directly exposed to EDCs, exhibit physiological
alterations induced by the parental EDC exposure.
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IN VITRO STUDIES

While in vivo experimental approaches take into account all
physiological processes and interactions occurring in the animal
upon EDCs exposure, in vitro approaches, on the other hand, are
helpful in determining the direct effects of chemicals on a specific
tissue or cell type. Since in vitro studies are inherently more
controlled and include fewer confounding factors, they are
suitable to determine specific mechanisms of action of EDCs
under near-ideal conditions. Experimental manipulation of
cellular pathways such as addition of specific inhibitors or
activators, can help pinpoint the specific molecular target/s of
EDCs within the cell, a key step in categorizing an EDC. These in
vitro culture systems (exemplified in Figure 2) can address the
effects of a wide variety of EDCs on cells or organs when coupled
with methods to measure morphological changes, disruption on
cell development and hormone synthesis related to growth and
reproduction. In contrast to in vivo approaches, in vitro
experimental designs are more temporally constrained as most
cell or organ incubations have limited viability. As such, exposure
time varies in in vitro systems based on viability of cells and the
amount of time required to induce an effect on specific markers or
responsive elements. An overview of several in vitro assays for
substances possessing endocrine activity in fish is also provided by
Scholz et al. (207). Some in vitro approaches are routinely used for
screening candidate EDCs and wastewater samples (208–216), and
used as a guide for a higher tier EDC test (in vivo experiments and
field studies) in a tiered strategy (Figure 3). These in vitro
screening assays include cell proliferation assays (E-screen
assays), yeast-based screens and reporter gene assays that utilize
fish and human cell lines, including human breast cancer cells.
Further information on this tiered approach is discussed elsewhere
(217, 218). We divide this section into cell/organ culture
experiments and binding assays. Below, in vitro studies designed
to analyze the direct effects of EDCs on hormone synthesis, ER/er,
VTG/vtg, and GH/IGF-related factors, and to validate the
endocrine disrupting potency of complex environmental
chemical mixtures are discussed.

Cell/Organ Culture
A short incubation (18 h) of testicular fragments with arsenic,
steroid hormone precursors, and human chorionic gonadotropin
(hCG) suppressed hCG-induced synthesis of 11-KT and
inhibited progesterone synthesis from pregnenolone (40).
Bream (Abramis brama) and carp hepatocytes treated with
EE2 for 4 days showed concentration-dependent induction of
VTG (220). Primary hepatocyte cultures have also been
employed to characterize the effects of EE2 on growth-related
factors. In rainbow trout juveniles, for example, hepatocytes
treated with EE2 for 48 h showed a concentration-dependent
upregulation of er and vtg and downregulation of ghr1 and igfbp1
(145). Treatment of testicular fragments of Japanese eel (Anguilla
japonica) with NP with or without 11-KT for 15 or 30 days
stimulated early spermatogonial renewal, induced hypertrophy
in Sertoli cells and decreased the number of germ cells (123).
Using the same in vitro system, testicular fragments cultured
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with arsenic in the presence or absence of hCG for 6 or 15 days
elicited a dose-dependent inhibition of hCG-induced germ cell
proliferation and induced apoptosis and oxidative DNA damage
in germ cells (40). Some studies have coupled in vitro cell
screening assays with in vivo approaches to provide a more
comprehensive understanding of the effects of EDCs or to
validate EDC potencies of wastewater treatment plant effluents
(WWTPE) in fish. E-screen assays which is based on
proliferation of human breast cancer cells MCF-7 is used to
analyze the estrogenicity of water, sediment and WWTPE. This
in vitro assay supported the results of in vivo experiments using
juvenile brown trout (Salmo trutta f. fario) (140). Rainbow trout
and carp hepatocyte assays were used to examine induction of
VTG by EE2 and other compounds to predict their estrogenicity
supporting the in vivo life cycle tests using zebrafish (118).

Binding Assays
An in vitro screening assay using a recombinant yeast system
expressing rainbow trout ER and a 48 h trout hepatocyte culture
showed ER affinity and induction of hepatocyte vtg by NP,
respectively (111). In another in vitro assay, estrogenic
environmental chemicals were screened using the rainbow
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trout gonad cell line, RTG-2, containing era complementary
DNA (rtEra cDNA). Results indicated that EE2, NP and sewage
treatment effluent extract had estrogenic activity (114). Other in
vitro screening assays for assessing estrogenic activity in sewage
treatment effluents are described in Rutishauser et al. (219).
Miyagawa et al. (141) developed customized in vitro ERa
reporter gene assays using HEK293 cells as hosts for ERa of
various fish species [medaka, common carp, goldfish guppy,
stickleback (Gasterosteus aculeatus), bluegill (Lepomis
macrochirus), fathead minnow, roach (Rutilus rutilus), and
zebrafish] to analyze the ligand- and species-specificity for
several estrogenic chemicals, including NP and BPA. NP and
BPA induced the transactivation of ERa from all species of
fish tested.

Several binding assays were also used in combination with in
vivo experiments in a tiered approach. For instance, in zebrafish, in
vitro screening assays using transfected human breast cancer cells
(MVLN) containing an estrogen response element coupled to a
luciferase reporter gene, and an estrogen-inducible expression
system in yeast cells integrated with human estrogen receptor
(YES screen) were used for dose-range and estrogenic potency
studies to determine concentrations to be used in in vivo assays.
FIGURE 2 | Schematic illustration of a gonadal in vitro culture system that can be utilized for analyzing direct effects of a variety of compounds or hormones on
germ cell growth and development, as well as gonadal gene expression in different teleost species [illustration modified from Miura and Miura (206), with author’s
permission]. Testis or ovary are first cut into small fragments, and then placed on a nitrocellulose membrane set on top of agarose gel cylinders for long-term
incubations, or directly placed in the wells for short-term incubations. Testicular or ovarian fragments are cultured in medium with or without EDCs, hormone, or
steroid hormone precursors for up to 30 days. Endpoint analyses correspond to immunoassays, histology, immunohistochemistry, and gene expression assays.
*Usually utilized for long culture periods.
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EE2 and NP were found to be estrogenic in both in vitro assays
and were able to induce plasma VTG and reduce the GSI in female
zebrafish, in vivo (122). In another experiment, in vitro luciferase
reporter assays employing human cell lines (HeLa-9903 and
MDA-kb2) to detect ER or AR were used to analyze the
endocrine activity of water, sediment, and WWTPE. The
reproduction-disrupting effects revealed by these in vitro assays
were subsequently corroborated by in vivo experiments using
juvenile brown trout, thereby underscoring the power of high
throughput in vitro approaches to narrow down the targets for
endocrine disruption observed in field-exposed fish (140). In
Segner et al. (118), the estrogenicity of compounds, including
EE2, was tested by recombinant yeast ER assay, a carp hepatic ER
competitive radioreceptor assay, and in vivo life cycle tests using
zebrafish. In this study, EE2 estrogenicity was confirmed and the
in vitro assay was found to be the best predictor of the in vivo test.

Unlike most in vivo approaches, these in vitro assays are
usually rapid, cost-effective for the output of chemicals screened
and can be performed under controlled environments, thereby
eliminating the possibility of contamination by chemicals other
Frontiers in Endocrinology | www.frontiersin.org 13
than selected compounds to be tested. Some studies incorporate
mammalian cell lines and luciferase reporter assays into in vitro
approaches to evaluate dose responses of potential EDCs that can
be used to test in fish models. Most of these in vitro tests have
been designed to detect reproduction-related genes. For
detecting growth-related genes, in vitro assays employing
primary hepatocyte cultures have served as a good model for
assessing the effects of EDCs on the GH/IGF system in fish (145).
A combination of these in vitro tests provides a comprehensive
perspective of the impact of EDCs on the growth and
reproductive physiology of fish.
IN SILICO APPROACHES

Computational methods used in drug development have been
recently applied in EDCs research. These in silico approaches
(illustrated in Figure 4) have the capacity to detect potential
EDCs without the use of animals or cells, largely serving as an
initial screening strategy that also attenuates the cost and time
FIGURE 3 | Schematic illustration of an in vitro system used for screening of potential EDCs and testing for estrogenicity of waste water effluents in a tiered strategy.
These screening assays utilize fish and human cell lines, yeast cells, and human breast cancer cells for the first tier. The results are then validated in the lab by in vivo
testing, or further validated by examining phenotypic or genotypic changes in fish inhabiting contaminated areas.
February 2021 | Volume 11 | Article 619361

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Celino-Brady et al. Experimental Methods for Testing EDCs
constraints of in vivo and in vitro approaches. So far, in fish, most
computational models used structure–activity relationship
methods which correlate the chemical structure of compounds
with biological activity (Figure 4). The biological activity is
determined through a number of molecular descriptors such as
molecular weight, hydrophobicity, topology, or electronic
properties (220). Based on these descriptors, the estrogenicity,
androgenicity, lipophilicity, and LC50 are then predicted
(Figure 4). Comprehensive descriptions of various in silico
methods suitable for EDC screening and research have been
recently reviewed (220–222). In this section we discuss in silico
approaches that have been used in EDC studies, including
quantitative structure property relationship (QSAR), structural
alerts or pharmacophore modeling, and molecular docking.
QSAR prediction models have been developed to predict a
particular activity or property of the molecule (e.g., molecular
weight) of interest. Pharmacophore modeling detect features
within the binding cavity that would ensure interactions
between the biological target (receptor) and the potential
ligands based on receptor structures (223–225) or aligns a set
Frontiers in Endocrinology | www.frontiersin.org 14
of known ligands in the absence of receptor structure to observe
common features that may predict biological activity (226).
Molecular docking, on the other hand, involves prediction of
the ligand conformation and its position and orientation within
binding sites and assessment of the binding affinity (227). This
approach is utilized as a model for predicting the interaction
between a small molecule and a protein at the atomic level,
allowing for characterization of the behavior of molecules in the
binding site of target proteins (228). Nevertheless, in silico
methods have been only recently applied to predicting the
effects of EDCs in fish and studies are scarce.
QSAR/Structural Alerts
Potential EDCs in fish were screened using data from structural
alerts and in vitro and in vivo toxicological assays (151).
Structural alerts represent potential estrogenic and androgenic
endocrine activities based on in vitro studies and are used for
indicating potential estrogenic and androgenic endocrine
disruptors in fish. The model generated was then applied to a
database of commercial substances to search for chemicals with
estrogenic or androgenic effects. The combination of these
methods was found to have a potential to further assess
candidate estrogenic and androgenic EDCs. In largemouth bass,
transcriptome profiling data was coupled with computational
analysis to model the effects of chemicals in the ovary. First, a
dynamic model representing the development of healthy ovaries
from unexposed fish was constructed, and the responses of the
transcriptomes from fish collected from polluted areas were
mapped to enable the identification of clusters of genes affected
at different stages of ovarian development. Then, using a robust
database that provides information on chemical interaction with
genes, proteins, and diseases (Comparative Toxicogenomic
Database), potential chemicals associated with specific molecular
responses on the ovary were identified (155). Another study,
applied the QSAR method utilizing chemical features and mode
of action to predict acute toxicity effects of EDCs in fish. This
study, among other outcomes, determined that estrogen receptor
binding affinity is dependent on the relationship between
lipophilicity (expressed as octanol-water partition coefficient,
Kow) and LC50, and that both EE2 and NP strongly bind to the
ER (156).

Molecular Docking
A molecular docking approach is relevant for predicting the
binding of EDCs to hormone receptors and binding proteins. It
has been used to obtain insights on the molecular interactions of
environmental xenoestrogens (229). In killifish, a molecular
docking approach demonstrated that BPA interacted with
residues in foxl2 (162). Chen et al. (158) evaluated the
estrogenic potentials of NP and BPA through the use of
molecular docking analysis in conjunction with a reduced life
expectancy model in adult zebrafish. The analysis revealed an
interaction potential of both NP and BPA to ERa. Another study
employing a 3-D structure-based computational method,
showed that the ligand binding domains of medaka ERs are
similar in architecture and have conserved amino acid residues
FIGURE 4 | Schematic illustration of a QSAR method for screening of EDCs
[adapted from Bohlen et al. (156), with author’s permission]. This type of in
silico approach used a structure-activity relationship correlating the chemical
features of compounds with their biological activity. The resulting data can
then be used to predict the estrogenic/androgenic potential, toxicity, and
lipophilicity of a compound or a complex mixture.
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that interact with E2; the authors also found that NP and BPA
form hydrogen bonds with medaka ER1 (147).

These and other emerging computer-assisted technologies
shall allow for prediction of endocrine disrupting activities of
chemicals with increasingly greater power and specificity and
complement the toolbox of approaches used for screening EDCs,
in vitro.
CONCLUSION

In this review, we provided an overview of studies employing
different approaches to evaluate effects of select endocrine
disrupting compounds. The results from these studies showed
that common aquatic pollutants that are weakly estrogenic such
as NP, can elicit long-term endocrine disrupting responses. Not
only are EDCs long-lasting in contaminated environments due
to their stable chemical structures, their effects can persist over
the lifetime of an organism and in unexposed progenies of
exposed parents.

In vivo approaches in various fish species are used to evaluate
a wide range of consequences from exposure to EDCs including
effects on body and organ weight, cell differentiation and growth,
protein and gene expression and enzyme activities, among other
endpoints. They tend to be, however, labor- and cost-intensive
and unsuitable for large-scale screening. In vivo experiments can
also provide more direct inferences to actual changes in
biological activity but cannot, however, elucidate cellular
mechanisms involved in EDCs exposure. By contrast, in vitro
assays usually take into account a limited number of processes
impacted by EDCs, but allow for assessment of the direct effects
of chemicals on a specific tissue or cells with high screening
throughput, though, testing a wide range of potential EDCs in
vitro can be time consuming. Moreover, it is challenging to make
direct inferences of biological activity at an organismal level from
in vitro approaches. Last, in silico approaches offer an alternative
Frontiers in Endocrinology | www.frontiersin.org 15
strategy for rapid and robust screening while optimizing best
practices for considering the use and care of animals in research,
summarized by refinement, reduction and replacement (“3R’s”;
230). In silico approaches, however, still need further validation
in vivo. Together, the results from various studies employing
different approaches underscore the severity of EDC exposure in
wild populations offish. Alone or combined, in silico, in vitro and
in vivo approaches shall continue to provide robust assessments
of endocrine activity or adverse effects of EDCs on multiple
physiological processes of aquatic organisms, including fish.
Ultimately, collaborative efforts would enable the assessment of
EDC’s effects by employing all three approaches to provide a
more comprehensive understanding of the underlying processes
involved in the exposure to EDCs or to evaluate potencies of
wastewater effluents. The outcome of these comprehensive
studies could in turn demonstrate the biological changes that
impact the survival of aquatic organisms, thereby informing
government agencies in making effective policy decisions.
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